1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
//! Extended Page Table.
//!
//! ## Background
//! When multiple virtual machines are running on a single physical machine, the hypervisor must need to have a method
//! for mapping virtual machine's memory addresses to the physical memory addresses of the host memory.
//! For this purpose, the hypervisor emulates the guest page table through Shadow Paging.
//! However, virtualizing memory access by shadow paging requires processing all requests for virtual address translation
//! demanded by all virtual machine OS kernels (such as CR3 register access, page table modifications, and VA-PA translation via MMU).
//! EPT allows virtual machines to have their page tables, which map virtual addresses to physical addresses, while also
//! allowing the hypervisor to maintain its own page table for the host machine.
//!
//! ## Tasks
//! In this project, you are requested to implement of the Extended Page Table for the gKeOS operating system.
//! To manage and translate the guest physical address to the host physical address, [`simple_ept_vm`] uses the
//! implemented EPT functionalities in this project.
//! The main concept of this project is similar to the page table implementations of Project 1.
//! You have to implement [`ExtendedPageTable::map`], [`ExtendedPageTable::unmap`] and [`ExtendedPageTable::walk`] to be used for managing extended page table.
//! In contrast to the page table implementation from Project 1, EPT determines the presence of an entry by examining the presence of flags in page table entries.
//! Stated differently, if there are no flags present in an EPT entry, this indicates that the physical address referenced by the entry is not valid (i.e., it is set to None).
//! It is important to account for huge pages in the address translation process [`kev::Probe::gpa2hpa`],
//! as there are instances where the allocation of huge pages cannot be avoided in x86 at the initial boot time.
//!
use alloc::boxed::Box;
use core::ops::{Deref, DerefMut};
use keos::{
addressing::{Pa, Va, PAGE_MASK, PAGE_SHIFT},
mm::Page,
};
use kev::{
vm::{Gpa, Gva},
vmcs::{ActiveVmcs, Field},
};
use project1::page_table::{Pde, PdeFlags, Pdpe, PdpeFlags, Pml4e, Pml4eFlags, Pte, PteFlags};
#[derive(Debug, PartialEq, Eq)]
pub enum EptMappingError {
/// Unaligned address
Unaligned,
/// Not exist
NotExist,
/// Has a duplicated mapping.
Duplicated,
}
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct EptPml4e(usize);
impl EptPml4e {
/// Get a physical address pointed by this entry.
#[inline]
pub fn pa(&self) -> Option<Pa> {
todo!()
}
/// Get a flags this entry.
#[inline]
pub const fn flags(&self) -> EptPml4eFlags {
EptPml4eFlags::from_bits_truncate(self.0)
}
/// Set physical address of this entry.
///
/// # WARNING
/// Permission of this entry is not changed.
#[inline]
pub fn set_pa(&mut self, pa: Pa) -> Result<&mut Self, EptMappingError> {
let pa = unsafe { pa.into_usize() };
if pa & 0xfff != 0 {
Err(EptMappingError::Unaligned)
} else {
self.0 = pa | (self.0 & EptPml4eFlags::all().bits());
Ok(self)
}
}
/// Set a permission of this entry.
#[inline]
pub fn set_perm(&mut self, perm: EptPml4eFlags) -> &mut Self {
self.0 = perm.bits() | (self.0 & !EptPml4eFlags::all().bits());
self
}
/// Get a mutable reference of page directory pointer table pointed by this entry.
#[inline]
pub fn into_ept_pdp_mut(&mut self) -> Result<&mut [EptPdpe], EptMappingError> {
let pa = self.pa().ok_or(EptMappingError::NotExist)?;
unsafe {
Ok(core::slice::from_raw_parts_mut(
pa.into_va().into_usize() as *mut EptPdpe,
512,
))
}
}
/// Get a reference of page directory pointer table pointed by this entry.
#[inline]
pub fn into_ept_pdp(&self) -> Result<&[EptPdpe], EptMappingError> {
let pa = self.pa().ok_or(EptMappingError::NotExist)?;
unsafe {
Ok(core::slice::from_raw_parts(
pa.into_va().into_usize() as *const EptPdpe,
512,
))
}
}
}
bitflags::bitflags! {
/// Table 28-1. Format of an EPT PML4 Entry (PML4E) that References an EPT Page-Directory-Pointer Table
pub struct EptPml4eFlags: usize {
/// indicates whether reads are allowed from the 512-GByte region controlled by this entry
const READ = 1 << 0;
/// indicates whether writes are allowed to the 512-GByte region controlled by this entry
const WRITE = 1 << 1;
/// If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether instruction
/// fetches are allowed from the 512-GByte region controlled by this entry
///
/// If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
/// allowed from supervisor-mode linear addresses in the 512-GByte region controlled by this entry
const EXECUTE = 1 << 2;
/// If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed
/// the 512-GByte region controlled by this entry (see Section 28.3.5). Ignored if bit 6 of EPTP is 0
const ACCESSED = 1 << 8;
/// If the “mode-based execute control for EPT” VM-execution control is 1, indicates whether instruction
/// fetches are allowed from user-mode linear addresses in the 512-GByte region controlled by this entry.
///
/// If that control is 0, this bit is ignored.
const USER_EXECUTE = 1 << 10;
const FULL = Self::READ.bits() | Self::WRITE.bits() | Self::EXECUTE.bits();
}
}
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct EptPdpe(usize);
impl EptPdpe {
/// Get a physical address pointed by this entry.
#[inline]
pub fn pa(&self) -> Option<Pa> {
todo!()
}
/// Get a flags this entry.
#[inline]
pub const fn flags(&self) -> EptPdpeFlags {
EptPdpeFlags::from_bits_truncate(self.0)
}
/// Set physical address of this entry.
///
/// # WARNING
/// Permission of this entry is not changed.
#[inline]
pub fn set_pa(&mut self, pa: Pa) -> Result<&mut Self, EptMappingError> {
let pa = unsafe { pa.into_usize() };
if pa & 0xfff != 0 {
Err(EptMappingError::Unaligned)
} else {
self.0 = pa | (self.0 & EptPdpeFlags::all().bits());
Ok(self)
}
}
/// Set a permission of this entry.
#[inline]
pub fn set_perm(&mut self, perm: EptPdpeFlags) -> &mut Self {
self.0 = perm.bits() | (self.0 & !EptPdpeFlags::all().bits());
self
}
/// Get a mutable reference of page directory pointed by this entry.
#[inline]
pub fn into_ept_pd_mut(&mut self) -> Result<&mut [EptPde], EptMappingError> {
let pa = self.pa().ok_or(EptMappingError::NotExist)?;
unsafe {
Ok(core::slice::from_raw_parts_mut(
pa.into_va().into_usize() as *mut EptPde,
512,
))
}
}
/// Get a reference of page directory pointed by this entry.
#[inline]
pub fn into_ept_pd(&self) -> Result<&[EptPde], EptMappingError> {
let pa = self.pa().ok_or(EptMappingError::NotExist)?;
unsafe {
Ok(core::slice::from_raw_parts(
pa.into_va().into_usize() as *const EptPde,
512,
))
}
}
}
bitflags::bitflags! {
/// Table 28-3. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an EPT Page Directory
pub struct EptPdpeFlags: usize {
/// indicates whether reads are allowed from the 1-GByte region controlled by this entry
const READ = 1 << 0;
/// indicates whether writes are allowed to the 1-GByte region controlled by this entry
const WRITE = 1 << 1;
/// If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether instruction
/// fetches are allowed from the 1-GByte region controlled by this entry
///
/// If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
/// allowed from supervisor-mode linear addresses in the 1-GByte region controlled by this entry
const EXECUTE = 1 << 2;
/// If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed
/// the 1-GByte region controlled by this entry (see Section 28.3.5). Ignored if bit 6 of EPTP is 0
const ACCESSED = 1 << 8;
/// If the “mode-based execute control for EPT” VM-execution control is 1, indicates whether instruction
/// fetches are allowed from user-mode linear addresses in the 1-GByte region controlled by this entry.
///
/// If that control is 0, this bit is ignored.
const USER_EXECUTE = 1 << 10;
const FULL = Self::READ.bits() | Self::WRITE.bits() | Self::EXECUTE.bits();
}
}
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct EptPde(usize);
impl EptPde {
/// Get a physical address pointed by this entry.
#[inline]
pub fn pa(&self) -> Option<Pa> {
todo!()
}
/// Get a flags this entry.
#[inline]
pub const fn flags(&self) -> EptPdeFlags {
EptPdeFlags::from_bits_truncate(self.0)
}
/// Set physical address of this entry.
///
/// # WARNING
/// Permission of this entry is not changed.
#[inline]
pub fn set_pa(&mut self, pa: Pa) -> Result<&mut Self, EptMappingError> {
let pa = unsafe { pa.into_usize() };
if pa & 0xfff != 0 {
Err(EptMappingError::Unaligned)
} else {
self.0 = pa | (self.0 & EptPdeFlags::all().bits());
Ok(self)
}
}
/// Set a permission of this entry.
#[inline]
pub fn set_perm(&mut self, perm: EptPdeFlags) -> &mut Self {
self.0 = perm.bits() | (self.0 & !EptPdeFlags::all().bits());
self
}
/// Get a mutable reference of page table pointed by this entry.
#[inline]
pub fn into_ept_pt_mut(&mut self) -> Result<&mut [EptPte], EptMappingError> {
let pa = self.pa().ok_or(EptMappingError::NotExist)?;
unsafe {
Ok(core::slice::from_raw_parts_mut(
pa.into_va().into_usize() as *mut EptPte,
512,
))
}
}
/// Get a reference of page table pointed by this entry.
#[inline]
pub fn into_ept_pt(&self) -> Result<&[EptPte], EptMappingError> {
let pa = self.pa().ok_or(EptMappingError::NotExist)?;
unsafe {
Ok(core::slice::from_raw_parts(
pa.into_va().into_usize() as *const EptPte,
512,
))
}
}
}
bitflags::bitflags! {
/// Table 28-5. Format of an EPT Page-Directory Entry (PDE) that References an EPT Page Table
pub struct EptPdeFlags: usize {
/// indicates whether reads are allowed from the 2-MByte region controlled by this entry
const READ = 1 << 0;
/// indicates whether writes are allowed to the 2-MByte region controlled by this entry
const WRITE = 1 << 1;
/// If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether instruction
/// fetches are allowed from the 2-MByte region controlled by this entry
///
/// If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
/// allowed from supervisor-mode linear addresses in the 2-MByte region controlled by this entry
const EXECUTE = 1 << 2;
/// If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed
/// the 2-MByte region controlled by this entry (see Section 28.3.5). Ignored if bit 6 of EPTP is 0
const ACCESSED = 1 << 8;
/// If the “mode-based execute control for EPT” VM-execution control is 1, indicates whether instruction
/// fetches are allowed from user-mode linear addresses in the 2-MByte region controlled by this entry.
///
/// If that control is 0, this bit is ignored.
const USER_EXECUTE = 1 << 10;
const FULL = Self::READ.bits() | Self::WRITE.bits() | Self::EXECUTE.bits();
}
}
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct EptPte(usize);
impl EptPte {
/// Get a physical address pointed by this entry.
#[inline]
pub fn pa(&self) -> Option<Pa> {
todo!()
}
/// Get a flags this entry.
#[inline]
pub const fn flags(&self) -> EptPteFlags {
EptPteFlags::from_bits_truncate(self.0)
}
/// Set physical address of this entry.
///
/// # WARNING
/// Permission of this entry is not changed.
#[inline]
pub fn set_pa(&mut self, pa: Pa) -> Result<&mut Self, EptMappingError> {
let pa = unsafe { pa.into_usize() };
if pa & 0xfff != 0 {
Err(EptMappingError::Unaligned)
} else {
self.0 = pa | (self.0 & EptPteFlags::all().bits());
Ok(self)
}
}
/// Set a permission of this entry.
#[inline]
pub fn set_perm(&mut self, perm: EptPteFlags) -> &mut Self {
self.0 = perm.bits() | (self.0 & !EptPteFlags::all().bits());
self
}
}
bitflags::bitflags! {
/// Table 29-6. Format of an EPT Page-Table Entry that Maps a 4-KByte Page
pub struct EptPteFlags: usize {
/// indicates whether reads are allowed from the 4-KByte page referenced by this entry
const READ = 1 << 0;
/// indicates whether writes are allowed to the 4-KByte page referenced by this entry
const WRITE = 1 << 1;
/// If the “mode-based execute control for EPT” VM-execution control is 0, execute access;
/// indicates whether instruction fetches are allowed from the 4-KByte page controlled by this entry
///
/// If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
/// allowed from supervisor-mode linear addresses in the 4-KByte page controlled by this entry
const EXECUTE = 1 << 2;
// bit 5-3. EPT memory type for this 4-KByte page (see Section 28.3.7)
#[doc(hidden)]
const BIT3 = 1 << 3;
#[doc(hidden)]
const BIT4 = 1 << 4;
#[doc(hidden)]
const BIT5 = 1 << 5;
// bit 6. Ignore PAT memory type for this 4-KByte page (see Section 28.3.7)
#[doc(hidden)]
const BIT6 = 1 << 6;
/// indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 28.3.5).
/// Ignored if bit 6 of EPTP is 0
const ACCESSED = 1 << 8;
/// indicates whether software has written to the 4-KByte page referenced by this entry (see Section 28.3.5).
/// Ignored if bit 6 of EPTP is 0
const DIRTY = 1 << 9;
/// Verify guest paging. If the “guest-paging verification” VM-execution control is 1, indicates limits on the guest paging
/// structures used to access the 4-KByte page controlled by this entry (see Section 28.3.3.2).
/// If that control is 0, this bit is ignored.
const VERIFY = 1 << 57;
/// If the “EPT paging-write control” VM-execution control is 1, indicates that guest paging may
/// update the 4-KByte page controlled by this entry (see Section 28.3.3.2).
/// If that control is 0, this bit is ignored.
const PAGING_WRITE_ACCESS = 1 << 58;
/// If bit 7 of EPTP is 1, indicates whether supervisor shadow stack accesses are allowed to
/// guest-physical addresses in the 4-KByte page mapped by this entry (see Section 28.3.3.2).
/// Ignored if bit 7 of EPTP is 0
const SUPERVISOR_SHADOW_STACK = 1 << 60;
/// If the “sub-page write permissions for EPT” VM-execution control is 1,
/// writes to individual 128-byte regions of the 4-KByte page referenced by
/// this entry may be allowed even if the page would normally not be writable (see Section 28.3.4).
/// If “sub-page write permissions for EPT” VM-execution control is 0, this bit is ignored.
const SUBPAGE_WRITE_PERMISSION = 1 << 61;
/// If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to
/// this page are convertible to virtualization exceptions only if this bit is 0 (see Section 25.5.7.1).
/// If “EPT-violation #VE” VMexecution control is 0, this bit is ignored.
const SUPPRESS_VE = 1 << 63;
const FULL = Self::READ.bits() | Self::WRITE.bits() | Self::EXECUTE.bits();
}
}
bitflags::bitflags! {
/// Possible memory permissions.
pub struct Permission: usize {
/// Page is readable.
const READ = 1 << 0;
/// Page is writable.
const WRITE = 1 << 1;
/// Page is executable.
const EXECUTABLE = 1 << 2;
}
}
// Make ept align to 4096.
#[repr(align(4096))]
struct Inner([EptPml4e; 512]);
impl Deref for Inner {
type Target = [EptPml4e; 512];
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for Inner {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
/// Second level page table that holds guest-physical to host-physical mapping.
pub struct ExtendedPageTable(Box<Inner>);
impl ExtendedPageTable {
pub fn new() -> Self {
Self(unsafe { Box::new_zeroed().assume_init() })
}
pub fn pa(&self) -> Pa {
Va::new(self.0.as_ref().as_ptr() as usize)
.unwrap()
.into_pa()
}
/// Map `pg` into `va` with permission `perm`.
pub fn map(&mut self, gpa: Gpa, pg: Page, perm: Permission) -> Result<(), EptMappingError> {
unsafe { self.do_map(gpa, pg.into_raw(), perm) }
}
/// Map `hpa` into `pa` with permission `perm`.
pub unsafe fn do_map(
&mut self,
gpa: Gpa,
hpa: Pa,
perm: Permission,
) -> Result<(), EptMappingError> {
// Hint: Use each flags's `FULL` to determine whether entry is allocated or not.
todo!()
}
/// Unmap the `gpa` and returns `Page` that was mapped to `gpa`.
pub fn unmap(&mut self, gpa: Gpa) -> Result<Page, EptMappingError> {
// Hint: Use `Page::from_pa()`.
todo!()
}
/// Walk the extended page table and return corresponding eptpte of the `gpa` if exist.
pub fn walk(&self, gpa: Gpa) -> Result<&EptPte, EptMappingError> {
todo!()
}
}
impl kev::Probe for ExtendedPageTable {
fn gpa2hpa(&self, _vmcs: &ActiveVmcs, gpa: Gpa) -> Option<Pa> {
todo!()
}
fn gva2hpa(&self, vmcs: &ActiveVmcs, gva: Gva) -> Option<Pa> {
// Hint:
// - You should consider the 2M huge page.
todo!()
}
}