1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
//! 4-level page table of x86_64.
//!
//! Implement x86_64's 4-level page table scheme.
//! More specifically, implement [`PageTable::map`], [`PageTable::unmap`] and [`PageTable::walk`].
//!
//! ## Background
//! ### Memory Protection
//! One of the main role of operating system is resource abstraction.
//! From now, you build an abstraction for CPU resources.
//! The other important resource of computer system is memory.
//!
//! Each process has their own memory. Each process's memory must not visible from others.
//! For example, your web browser should not be able to access the memory of your music player.
//! To do so, the harware introduce the memory protection mechanism to isolate the memory between processes.
//!
//! ### Virtual Memory
//! The concept of virtual memory is to abstract memory addresses from the underlying physical storage device.
//! Instead of accessing the storage device directly, it is authenticated and translated through the memory management unit (MMU).
//! To distinguish the two types of addresses, the pre-translation address is called a virtual address, and the post-translation address is called a physical address.
//! One important difference between these two types of addresses is that the physical addresses are unique and always refer to the same memory location.
//! For virtual addresses, two different virtual addresses can refer to the same physical address. The same virtual address can also refer to different physical addresses.
//!
//! ### Paging
//! Paging is a technique that divides physical and virtual memory space into small chunks of the same size. Each lump is called a page, and it's typically 4096 bytes.
//! The mapping of physical and virtual memory spaces is managed through the page table.
//! Typically, the currently active page table is managed through a register on a special CPU (e.g. cr3 in x86_64).
//!
//! ## Page table
//! For each memory access, the CPU translates the virtual memory address to the physical memory address through the page table.
//! Because it is inefficient to check the page table for each conversion, the CPU stores the previous results in a cache called Translation Lookaside Buffer (TLB).
//! The page table is also used to set attributes such as access permissions (e.g. read/write) for each page.
//! Note that attributes of all levels are **AND**ed.
//!
//! ## Paging in x86_64
//! x86_64 uses a 4096-byte page and a 4-level page table. Each table has 4096 bytes, the same size as the page, and an entry of table is 8 bytes.
//! Therefore, the 4-level page table can cover up to 48bit physical address.
//!
//! The index for each level can be calculated from the virtual memory address:
//! ```
//! 63 48 47 39 38 30 29 21 20 12 11 0
//! +-------------+----------------+----------------+----------------+-------------+------------+
//! | Sign Extend | Page-Map | Page-Directory | Page-directory | Page-Table | Page |
//! | | Level-4 Offset | Pointer | Offset | Offset | Offset |
//! +-------------+----------------+----------------+----------------+-------------+------------+
//! | | | | | |
//! +------- 9 ------+------- 9 ------+------- 9 ------+----- 9 -----+---- 12 ----+
//! Virtual Address
//! ```
//!
//! A page must be page-aligned, that is, start on a virtual address evenly divisible by the page size.
//! Thus, the last 12 bits of a 64-bit virtual address is the page offset (or just offset). The upper bits are used to indicate the index in the page table.
//!
//! Each process has an independent set of user pages, which are those pages below the kernel base.
//! The set of kernel pages, on the other hand, is global, and thus remain in the same position regardless of what thread or process is running.
//! The kernel may access both user and kernel pages, but a user process may access only its own user pages.
//!
//! KeOS provides several useful functions for working with virtual addresses and physical addresses.
//! See [`Pa`] and [`Va`] for details.
//!
//! [`Pa`]: ../../keos/addressing/struct.Pa.html
//! [`Va`]: ../../keos/addressing/struct.Va.html
//!
//! ### Translation lookaside Buffer
//! The TLB entry is not updated when the content of page table is changed.
//! Therefore, the kernel must invalidates the updated entry from the TLB by calling a special CPU instruction.
//! In x86_64, `invlpg` removes the entry according to the specified entry.
//! You can use [`TLBInvalidate`] to invalidate the TLB entry.
//! Note that TLB is fully flushed when `cr3` is reloaded.
//!
//! [`TLBInvalidate`]: TLBInvalidate
use alloc::boxed::Box;
use core::ops::{Deref, DerefMut};
use keos::{
addressing::{Pa, Va, PAGE_SHIFT},
mm::Page,
};
/// Struct for invalidating the tlb entry.
pub struct TLBInvalidate(Va);
impl TLBInvalidate {
/// Invalidate the underlying va.
pub fn invalidate(self) {
let va = core::mem::ManuallyDrop::new(self).0;
unsafe {
core::arch::asm!(
"invlpg [{0}]",
in(reg) va.into_usize(),
options(nostack)
);
}
}
/// Forget this modification.
///
/// # Safety
/// TLB must be flushed by another way.
pub unsafe fn forget(self) {
core::mem::forget(self);
}
}
impl Drop for TLBInvalidate {
fn drop(&mut self) {
panic!("TLB entry for {:?} is not invalidated.", self.0);
}
}
/// A list specifying categories of page table operation error.
#[derive(Debug, PartialEq, Eq)]
pub enum PageTableMappingError {
/// Unaligned address
Unaligned,
/// Not exist
NotExist,
/// Duplicated mapping
Duplicated,
}
/// Page Map Level 4 entry.
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct Pml4e(pub usize);
impl Pml4e {
/// Get a physical address pointed by this entry.
#[inline]
pub const fn pa(&self) -> Option<Pa> {
todo!()
}
/// Get a flags this entry.
#[inline]
pub const fn flags(&self) -> Pml4eFlags {
Pml4eFlags::from_bits_truncate(self.0)
}
/// Set physical address of this entry.
///
/// # WARNING
/// Permission of this entry is not changed.
#[inline]
pub fn set_pa(&mut self, pa: Pa) -> Result<&mut Self, PageTableMappingError> {
let pa = unsafe { pa.into_usize() };
if pa & 0xfff != 0 {
Err(PageTableMappingError::Unaligned)
} else {
self.0 = pa | self.flags().bits() | Pml4eFlags::P.bits();
Ok(self)
}
}
/// Set a permission of this entry.
#[inline]
pub fn set_perm(&mut self, perm: Pml4eFlags) -> &mut Self {
self.0 = self.pa().map(|n| unsafe { n.into_usize() }).unwrap_or(0) | perm.bits();
self
}
/// Get a mutable reference of page directory pointer table pointed by this entry.
#[inline]
pub fn into_pdp_mut(&mut self) -> Result<&mut [Pdpe], PageTableMappingError> {
let pa = self.pa().ok_or(PageTableMappingError::NotExist)?;
if !self.flags().contains(Pml4eFlags::P) {
return Err(PageTableMappingError::NotExist);
}
unsafe {
Ok(core::slice::from_raw_parts_mut(
pa.into_va().into_usize() as *mut Pdpe,
512,
))
}
}
/// Get a reference of page directory pointer table pointed by this entry.
#[inline]
pub fn into_pdp(&self) -> Result<&[Pdpe], PageTableMappingError> {
let pa = self.pa().ok_or(PageTableMappingError::NotExist)?;
if !self.flags().contains(Pml4eFlags::P) {
return Err(PageTableMappingError::NotExist);
}
unsafe {
Ok(core::slice::from_raw_parts(
pa.into_va().into_usize() as *const Pdpe,
512,
))
}
}
}
bitflags::bitflags! {
/// Flags for pml4e.
pub struct Pml4eFlags: usize {
/// Present; must be 1 to reference a page-directory-pointer table
const P = 1 << 0;
/// Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by this entry (see Section 4.6).
const RW = 1 << 1;
/// User/supervisor; if 0, user-mode accesses are not allowed to the 512-GByte region controlled by this entry (see Section 4.6)
const US = 1 << 2;
/// Page-level write-through; indirectly determines the memory type used to access the page-directory-pointer table referenced by this entry (see Section 4.9.2)
const PWT = 1 << 3;
/// Page-level cache disable; indirectly determines the memory type used to access the page-directory-pointer table referenced by this entry (see Section 4.9.2)
const PCD = 1 << 4;
/// Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)
const A = 1 << 5;
#[doc(hidden)] const _IGN_6 = 1 << 6;
#[doc(hidden)] const _REV_0 = 1 << 7;
#[doc(hidden)] const _IGN_8 = 1 << 8;
#[doc(hidden)] const _IGN_9 = 1 << 9;
#[doc(hidden)] const _IGN_10 = 1 << 10;
/// For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary paging)
const R = 1 << 11;
#[doc(hidden)] const _IGN_52 = 1 << 52;
#[doc(hidden)] const _IGN_53 = 1 << 53;
#[doc(hidden)] const _IGN_54 = 1 << 54;
#[doc(hidden)] const _IGN_55 = 1 << 55;
#[doc(hidden)] const _IGN_56 = 1 << 56;
#[doc(hidden)] const _IGN_57 = 1 << 57;
#[doc(hidden)] const _IGN_58 = 1 << 58;
#[doc(hidden)] const _IGN_59 = 1 << 59;
#[doc(hidden)] const _IGN_60 = 1 << 60;
#[doc(hidden)] const _IGN_61 = 1 << 61;
#[doc(hidden)] const _IGN_62 = 1 << 62;
/// If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 512-GByte region controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)
const XD = 1 << 63;
}
}
/// Page directory pointer table entry.
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct Pdpe(pub usize);
impl Pdpe {
/// Get a physical address pointed by this entry.
#[inline]
pub const fn pa(&self) -> Option<Pa> {
todo!()
}
/// Get a flags this entry.
#[inline]
pub const fn flags(&self) -> PdpeFlags {
PdpeFlags::from_bits_truncate(self.0)
}
/// Set physical address of this entry.
///
/// # WARNING
/// Permission of this entry is not changed.
#[inline]
pub fn set_pa(&mut self, pa: Pa) -> Result<&mut Self, PageTableMappingError> {
let pa = unsafe { pa.into_usize() };
if pa & 0xfff != 0 {
Err(PageTableMappingError::Unaligned)
} else {
self.0 = pa | self.flags().bits() | PdpeFlags::P.bits();
Ok(self)
}
}
/// Set a permission of this entry.
#[inline]
pub fn set_perm(&mut self, perm: PdpeFlags) -> &mut Self {
self.0 = self.pa().map(|n| unsafe { n.into_usize() }).unwrap_or(0) | perm.bits();
self
}
/// Get a mutable reference of page directory pointed by this entry.
#[inline]
pub fn into_pd_mut(&mut self) -> Result<&mut [Pde], PageTableMappingError> {
let pa = self.pa().ok_or(PageTableMappingError::NotExist)?;
if !self.flags().contains(PdpeFlags::P) {
return Err(PageTableMappingError::NotExist);
}
unsafe {
Ok(core::slice::from_raw_parts_mut(
pa.into_va().into_usize() as *mut Pde,
512,
))
}
}
/// Get a reference of page directory pointed by this entry.
#[inline]
pub fn into_pd(&self) -> Result<&[Pde], PageTableMappingError> {
let pa = self.pa().ok_or(PageTableMappingError::NotExist)?;
if !self.flags().contains(PdpeFlags::P) {
return Err(PageTableMappingError::NotExist);
}
unsafe {
Ok(core::slice::from_raw_parts(
pa.into_va().into_usize() as *const Pde,
512,
))
}
}
}
bitflags::bitflags! {
/// Flags for pdpe.
pub struct PdpeFlags: usize {
/// Present; must be 1 to reference a page directory
const P = 1 << 0;
/// Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by this entry (see Section 4.6)
const RW = 1 << 1;
/// User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte region controlled by this entry (see Section 4.6)
const US = 1 << 2;
/// Page-level write-through; indirectly determines the memory type used to access the page directory referenced by this entry (see Section 4.9.2)
const PWT = 1 << 3;
/// Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by this entry (see Section 4.9.2)
const PCD = 1 << 4;
/// Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)
const A = 1 << 5;
#[doc(hidden)] const _IGN_6 = 1 << 6;
#[doc(hidden)] const _REV_0 = 1 << 7;
#[doc(hidden)] const _IGN_8 = 1 << 8;
#[doc(hidden)] const _IGN_9 = 1 << 9;
#[doc(hidden)] const _IGN_10 = 1 << 10;
/// For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary paging)
const R = 1 << 11;
#[doc(hidden)] const _IGN_52 = 1 << 52;
#[doc(hidden)] const _IGN_53 = 1 << 53;
#[doc(hidden)] const _IGN_54 = 1 << 54;
#[doc(hidden)] const _IGN_55 = 1 << 55;
#[doc(hidden)] const _IGN_56 = 1 << 56;
#[doc(hidden)] const _IGN_57 = 1 << 57;
#[doc(hidden)] const _IGN_58 = 1 << 58;
#[doc(hidden)] const _IGN_59 = 1 << 59;
#[doc(hidden)] const _IGN_60 = 1 << 60;
#[doc(hidden)] const _IGN_61 = 1 << 61;
#[doc(hidden)] const _IGN_62 = 1 << 62;
/// If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte region controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)
const XD = 1 << 63;
}
}
/// Page directory entry.
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct Pde(pub usize);
impl Pde {
/// Get a physical address pointed by this entry.
#[inline]
pub const fn pa(&self) -> Option<Pa> {
todo!()
}
/// Get a flags this entry.
#[inline]
pub const fn flags(&self) -> PdeFlags {
PdeFlags::from_bits_truncate(self.0)
}
/// Set physical address of this entry.
///
/// # WARNING
/// Permission of this entry is not changed.
#[inline]
pub fn set_pa(&mut self, pa: Pa) -> Result<&mut Self, PageTableMappingError> {
let pa = unsafe { pa.into_usize() };
if pa & 0xfff != 0 {
Err(PageTableMappingError::Unaligned)
} else {
self.0 = pa | self.flags().bits() | PdeFlags::P.bits();
Ok(self)
}
}
/// Set a permission of this entry.
#[inline]
pub fn set_perm(&mut self, perm: PdeFlags) -> &mut Self {
self.0 = self.pa().map(|n| unsafe { n.into_usize() }).unwrap_or(0) | perm.bits();
self
}
/// Get a mutable reference of page table pointed by this entry.
#[inline]
pub fn into_pt_mut(&mut self) -> Result<&mut [Pte], PageTableMappingError> {
let pa = self.pa().ok_or(PageTableMappingError::NotExist)?;
if !self.flags().contains(PdeFlags::P) {
return Err(PageTableMappingError::NotExist);
}
unsafe {
Ok(core::slice::from_raw_parts_mut(
pa.into_va().into_usize() as *mut Pte,
512,
))
}
}
/// Get a reference of page table pointed by this entry.
#[inline]
pub fn into_pt(&self) -> Result<&[Pte], PageTableMappingError> {
let pa = self.pa().ok_or(PageTableMappingError::NotExist)?;
if !self.flags().contains(PdeFlags::P) {
return Err(PageTableMappingError::NotExist);
}
unsafe {
Ok(core::slice::from_raw_parts(
pa.into_va().into_usize() as *const Pte,
512,
))
}
}
}
bitflags::bitflags! {
/// Flags for pde.
pub struct PdeFlags: usize {
/// Present; must be 1 to reference a page table
const P = 1 << 0;
/// Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)
const RW = 1 << 1;
/// User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see Section 4.6)
const US = 1 << 2;
/// Page-level write-through; indirectly determines the memory type used to access the page table referenced by this entry (see Section 4.9.2)
const PWT = 1 << 3;
/// Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this entry (see Section 4.9.2)
const PCD = 1 << 4;
/// Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)
const A = 1 << 5;
/// Page size; indicates whether this entry is 2M page.
const PS = 1 << 7;
#[doc(hidden)] const _IGN_6 = 1 << 6;
#[doc(hidden)] const _REV_0 = 1 << 7;
#[doc(hidden)] const _IGN_8 = 1 << 8;
#[doc(hidden)] const _IGN_9 = 1 << 9;
#[doc(hidden)] const _IGN_10 = 1 << 10;
/// For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary paging)
const R = 1 << 11;
#[doc(hidden)] const _IGN_52 = 1 << 52;
#[doc(hidden)] const _IGN_53 = 1 << 53;
#[doc(hidden)] const _IGN_54 = 1 << 54;
#[doc(hidden)] const _IGN_55 = 1 << 55;
#[doc(hidden)] const _IGN_56 = 1 << 56;
#[doc(hidden)] const _IGN_57 = 1 << 57;
#[doc(hidden)] const _IGN_58 = 1 << 58;
#[doc(hidden)] const _IGN_59 = 1 << 59;
#[doc(hidden)] const _IGN_60 = 1 << 60;
#[doc(hidden)] const _IGN_61 = 1 << 61;
#[doc(hidden)] const _IGN_62 = 1 << 62;
/// If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)
const XD = 1 << 63;
}
}
/// Page table entry.
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct Pte(pub usize);
impl Pte {
/// Get a physical address pointed by this entry.
#[inline]
pub const fn pa(&self) -> Option<Pa> {
todo!()
}
/// Get a flags this entry.
#[inline]
pub const fn flags(&self) -> PteFlags {
PteFlags::from_bits_truncate(self.0)
}
/// Set physical address of this entry.
///
/// # WARNING
/// Permission of this entry is not changed.
#[inline]
pub fn set_pa(&mut self, pa: Pa) -> Result<&mut Self, PageTableMappingError> {
let pa = unsafe { pa.into_usize() };
if pa & 0xfff != 0 {
Err(PageTableMappingError::Unaligned)
} else {
self.0 = pa | self.flags().bits() | PteFlags::P.bits();
Ok(self)
}
}
/// Set a permission of this entry.
#[inline]
pub fn set_perm(&mut self, perm: PteFlags) -> &mut Self {
self.0 = self.pa().map(|n| unsafe { n.into_usize() }).unwrap_or(0) | perm.bits();
self
}
}
bitflags::bitflags! {
/// Flags for pte.
pub struct PteFlags: usize {
/// Present; must be 1 to map a 4-KByte page
const P = 1 << 0;
/// Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)
const RW = 1 << 1;
/// User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section 4.6)
const US = 1 << 2;
/// Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)
const PWT = 1 << 3;
/// Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)
const PCD = 1 << 4;
/// Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)
const A = 1 << 5;
/// Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)
const D = 1 << 6;
/// Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)
const PAT = 1 << 7;
/// Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise
const G = 1 << 8;
#[doc(hidden)] const _IGN_9 = 1 << 9;
#[doc(hidden)] const _IGN_10 = 1 << 10;
/// For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary paging)
const R = 1 << 11;
#[doc(hidden)] const _IGN_52 = 1 << 52;
#[doc(hidden)] const _IGN_53 = 1 << 53;
#[doc(hidden)] const _IGN_54 = 1 << 54;
#[doc(hidden)] const _IGN_55 = 1 << 55;
#[doc(hidden)] const _IGN_56 = 1 << 56;
#[doc(hidden)] const _IGN_57 = 1 << 57;
#[doc(hidden)] const _IGN_58 = 1 << 58;
/// Protection key bit 0; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 4.6.2); otherwise, it is ignored and not used to control access rights.
const PK_0 = 1 << 59;
/// Protection key bit 1; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 4.6.2); otherwise, it is ignored and not used to control access rights.
const PK_1 = 1 << 60;
/// Protection key bit 2; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 4.6.2); otherwise, it is ignored and not used to control access rights.
const PK_2 = 1 << 61;
/// Protection key bit 3; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 4.6.2); otherwise, it is ignored and not used to control access rights.
const PK_3 = 1 << 62;
/// If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)
const XD = 1 << 63;
}
}
bitflags::bitflags! {
/// Possible memory permissions.
pub struct Permission: usize {
/// Page is readable.
const READ = 1 << 0;
/// Page is writable.
const WRITE = 1 << 1;
/// Page is executable.
const EXECUTABLE = 1 << 2;
/// Page can be referred by user application.
const USER = 1 << 3;
}
}
// Make page table align to 4096.
#[repr(align(4096))]
struct Inner([Pml4e; 512]);
impl Deref for Inner {
type Target = [Pml4e; 512];
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for Inner {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
/// 4-level page table of x86_64.
pub struct PageTable(Box<Inner>);
impl PageTable {
/// Create a empty page table.
pub fn new() -> Self {
Self(Box::new(Inner([Pml4e(0); 512])))
}
/// Get physical address of this page table.
pub fn pa(&self) -> Pa {
Va::new(self.0.as_ref().as_ptr() as usize)
.unwrap()
.into_pa()
}
/// Map `pg` into `va` with permission `perm`.
pub fn map(&mut self, va: Va, pg: Page, perm: Permission) -> Result<(), PageTableMappingError> {
unsafe { self.do_map(va, pg.into_raw(), perm) }
}
/// Map `pa` into `va` with permission `perm`.
///
/// # Safety
/// `pa` must be valid.
pub unsafe fn do_map(
&mut self,
va: Va,
pa: Pa,
perm: Permission,
) -> Result<(), PageTableMappingError> {
// Hint: Use `Page::new()` to allocate tables.
todo!()
}
/// Unmap the `va` and returns `Page` that was mapped to `va`.
pub fn unmap(&mut self, va: Va) -> Result<Page, PageTableMappingError> {
// Hint: Use `Page::from_pa()`.
todo!()
}
/// Walk the page table and return corresponding pte of the `va` if exist.
pub fn walk(&self, va: Va) -> Result<&Pte, PageTableMappingError> {
todo!()
}
}